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Using a construction related to the quaternionic Hopf fibration, we con-

struct all S3 bundles over S4, which are classified by Z2 = π3(SO(4)), and

labeled as Mh,j . Using Reeb’s theorem from Morse theory, we show that

the Mh,j satisfying h + j = 1 are homeomorphic to topological 7-spheres.

Assuming these 7-spheres are diffeomorphic to the standard 7-sphere, we

construct an associated 8-manifold and calculate its first Pontryagin class.

Applying the Hirzebruch signature theorem, we can obtain a contradiction

to the assumption that theMh,j are diffeomorphic to the standard 7-sphere,

and we have our first explicit examples of exotic spheres.

We largely follow Milnor’s original paper,1 with additional exposition and

clarifying material taken from a UChicago REU Paper2 by Rachel McEnroe

and some MathOverflow comments from Greg Kuperberg.3

Background

Reeb’s Theorem

Here we’ll just discuss some results that we won’t have time to prove in full

generality. The first one is Reeb’s theorem on spheres.

Theorem 2.1: Reeb

For Mn closed, if there exists a differentiable function f :Mn → R
having only two non-degenerate critical points x0, x1, then Mn is

homeomorphic to Sn via a map which is a diffeomorphism except

possibly at a single point.

The basic idea is that since Mn is compact, x0 is (WLOG) the global max-

imum of f and x1 is the global minimum so the handlebody decomposition

thereof is the union of a 0-cell and an n-cell, which is a (topological) sphere.
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It turns out that this classification by
clutching works in all dimensions for

vector bundles with structure group
GLk R, i.e, the k-vector bundles over

Sn are classified by πn−1(GLk R).

The failure of this flavor of classi-
fication for 4+ dimensional spherical

fibers is related to the Smale conjec-

ture: since DiffSn deformation retracts
to O(n+1) for n = 1, 2, 3, π∗(DiffSn) ∼=
π∗(SO(n + 1)) (since O(n) has two
components, we choose a basepoint)

and this group classifies the Sn-bundles

over any sphere, and the reduction of
structure group from GLk R to SO(k)

(impressionistically, i.e, I haven’t filled

in all the details) corresponds to taking
the unit sphere subbundle.

Thus, all such Sn-bundles over any
sphere arise as the unit sphere sub-

bundle of some vector bundle in these

low dimensions. The failure of the
higher dimensional Smale conjecture

corresponds to both “exotic” self-

diffeomorphisms of these higher dimen-
sional spheres and corresponding “ex-

otic” sphere bundles not arising from

any vector bundle. A fun little rab-
bit hole that I encountered when I in-

correctly claimed that πn−1(SO(k+1))

classified all Sk-bundles over Sn.

Either way, Milnor dodges this entire

issue by just enforcing SO(4) as the
structure group for the bundles from

the outset.

Spheres on Spheres

Lemma 2.2

The S3-bundles on S4 are classified by π3(SO(4)) ∼= Z2.

The construction here is that every sphere Sn can be covered by two charts

(the complements of the North and South poles respectively), and we can

force any fiber bundle to trivialize on these charts (since they are diffeomor-

phic to Rn), so the nontrivial data of the fiber bundle is contained in the

transition map between these charts. This map’s domain is the intersection

of the charts which is homotopic to Sn−1 (the equator), and valued in the

group of self-diffeomorphisms of the fiber Sk, which when k = 3 is homo-

topy equivalent to O(4), and thus the homotopy groups of the group of

self-diffeomorphisms of the fiber classify all such fiber bundles. We reduce

from O(4) to SO(4) since O(n) is disconnected and the homotopy groups

demand basepoints.

It is straightforward to recover the transition map explicitly:

Corollary 2.3

Given a diffeomorphism g : Sn−1 → Sn−1, a transition map from

Rn \ {0} to itself is given by

u 7→ v =
1

∥u∥
g

(
u

∥u∥

)
The resulting manifold is homeomorphic to Sn, with Morse function

f(x) =
∥u∥2

1 + ∥u∥2
=

1

1 + ∥v∥2

The fact that π3(SO(4)) ∼= Z2 comes from the fact that S3 × S3 double

covers SO(4), and from the homotopy lifting lemma and the mapping lifting

theorems, as we will discuss a little more in the next section.

Main Result

Quaternionic Hopf Fibrations

The inspiration for our construction is the ordinary Hopf fibration, which

is an S1 bundle over S2 with total space S3 most easily realized in terms
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Note that by the above discussion, S1

bundles over S2 should be classified by
π1(SO(2)) = π1(S1) = Z and in fact

we may obtain all such bundles in a way

analogous to the construction central to
our main result: let gi : S

1 → SO(2) be

given by gi(z) · v = znv where we are
regarding S1 as the unit complex num-

bers, which is a more quotidian identi-

fication than S3 with the unit quater-
nions.

Note that since quaternionic multipli-
cation is noncommutative, we have to

specify that the equivalence relation for

HP1 uses left multiplication.

Note that u 7→ u
∥u∥2 is the normal tran-

sition map for stereographic projection,
i.e, the transition map gluing R4 \ {0}
to itself to give S4.

of C2 and CP1:

S1 = U(1) S3 ⊆ C2

S2 = CP1

(z1,z2)7→[z1,z2]

Our construction is based on the natural quaternionic analogue:

S3 = Spin(3) S7 ⊆ H2

S4 = HP1

(z1,z2)7→[z1,z2]

The total space of this fibration is in fact the standard 7-sphere, but a

variation on this construction will give us our result.

As we stated above π3(SO(4)) ∼= Z2 classifies the S3-bundles over S4. An

explicit isomorphism between these groups is as follows: for (h, j) ∈ Z2, let

fh,j : S3 → SO(4) be given by fh,j(u) · v = uhvuj for u ∈ S3, v ∈ R4, and

regarding S3 as the set of norm 1 quaternions.

To see that the fiber bundles we get from these transition maps are actually

distinct (and in fact, all possible S3-bundles over S4), we use the classical

fact that S3 × S3 double covers SO(4) by the map

Ψ : S3 × S3 → SO(4)

(u, v) 7→ ψu,v = (x 7→ uxv−1)

Ψ is a group homomorphism with kernel {(1, 1), (−1,−1)}, so the map is

indeed a double cover, so, for one thing, from the homotopy lifting lemma

and the mapping lifting theorems we know that π3(S
3×S3) = π3(SO(4)) =

Z2. Moreover, our fh,j are obtained as the composition of Ψ with f̃h,j :

S3 → S3 × S3 given by u 7→ (uh, u−j).

Using 2.3, this extends to a transition map between the North and South

hemispheres of our sphere given by

(u, v) 7→ (u′, v′) =

(
u

∥u∥2
,
uhvuj

∥u∥

)
where the map is understood to have domain and codomain (R4\{0})×S3 ∋
(u, v), and where we freely identify elements of R4 with elements of H. This

gluing map gives us the total space Mh,j .

Since fh,j = Ψ ◦ f̃h,j by construction, we can see that the fh,j are not

homotopic since if such a homotopy existed, it would lift to a homotopy

from S3 to S3 × S3 by the homotopy lifting property, and the f̃h,j clearly

correspond to different elements of π3(S
3 × S3) ∼= Z2.
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4 Kuperberg, Morse Theory and Exotic

Spheres.

We will omit the verification that f

as defined satisfies the hypothesis of
Reeb’s theorem. The justification for

f having exactly two critical points is

straightforward after noticing that, for
fixed u, Re(v) = ±1 is required for

(u, v) to be a critical point, so we only

need to check for criticality at points of
the form (u,±1).

5 Milnor, “Differentiable Structures on
Spheres”.

We call the fiber bundle obtained by this gluing map ξh,j :Mh,j → S4 with

total space Mh,j .

Topologically Spherical

Taking the standard charts on S4 as above, when h+ j = 1, f : Mh,j → R
given by

f (u, v) =
Re(v)√
1 + ∥u∥2

=
Re(u′(v ′)−1)√
1 + ∥u′(v ′)−1∥2

will be the Morse function that we desire.

Kuperberg4 notes that the point of this seemingly unmotivated function

is that the real part of a unit length quaternion is preserved under both

conjugation (as in aba−1, not as in the quaternionic analogue of complex

conjugation) and inversion, so, letting r = ∥u∥ and û = u
r , which takes v′ to

ûhvûjrh+j−1 = ûhvûj by the restriction on h, j. Moreover, v′û−1 = ûhvû−h

is clearly conjugate to v, and therefore

Re(v) = Re(v′û−1) = Re(û(v′)−1)

Thus, we have

f(u, v) =
Re(v)√
1 + r2

=
Re(û(v′)−1)√

1 + r2
=

Re(u′(v′)−1)√
1 + r−2

=
Re(u′(v′)−1)√
1 + ∥u′(v′)−1∥2

Kuperberg additionally suggests that a possible motivation for this defini-

tion is the quaternionic Hopf fibration on the standard S4, with a Morse

function on the total space (the standard S7) given by one of the coordi-

nates on R8, which clearly has a unique minimum and maximum on S7,

which (one can imagine) might correspond to taking the real part once

we’ve passed to the unit quaternion picture, and somehow this Morse func-

tion survives when h+ j = 1.

Indeed, in a subsequent paper of Milnor’s, the following result (in this vein)

is stated and proven:5

Proposition 3.1

Let f : Sm × Sn → Sm × Sn be a diffeomorphism, with f(x, y) =

(x′, y′), andM them+n+1 dimensional manifold obtained by gluing

Rm+1×Sn to Sm×Rn+1 along the correspondence (tx, y) 7→ (x′, t′y′)

where t′ = 1
t .

Suppose (x, y)
f−→ (x′, y′) satisfies yn = y′n for all (x, y), where

(y0, · · · , yn) and (y′0, · · · , y′n) are the standard coordinates on Sn ob-

tained by the embedding in Rn+1. Then the manifold M obtained

by gluing along f is homeomorphic to Sn+1.
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Trying to parse the meaning of this
Morse function was one of the more dif-

ficult parts of this paper; Milnor just

pulls it out of a hat.

Milnor largely skims over the details

in this proof, which I think are fairly
nonobvious, to me at least.

I am also not sure how this type of

argument generalizes to (say) the cor-
responding octonionic construction of

exotic 15-spheres; I assume everything
works fine if you enforce SO(k + 1)

as the structure group as Milnor does

here, avoiding the possibility of exotic
self-diffeomorphisms of the fibers, es-

pecially since Milnor’s paper predates

Hatcher’s proof of the Smale conjecture
by over twenty years.

The proof uses Reeb’s theorem as above, with the function

(tx, y) 7→ yn√
1 + t2

(x′, t′y′) 7→ t′y′n√
1 + t′2

in the first and second coordinate systems respectively, which has exactly

two critical points which are non-degenerate. Thus we can see that taking

the real part above was somewhat a red herring; we’re just using the fact

that any of the coordinates on Sn ↪→ Rn+1 is a Morse function satisfying

the hypothesis of Reeb’s theorem.

The Pontryagin-Hirzebruch Cabal

The state of affairs is that we have now constructed Mh,j for all h, j ∈ Z2,

and shown that if h + j = 1 (and in fact also if h + j = −1, as we will

see below), Mh,j is homeomorphic to S7. We will now construct some

associated 8-manifolds for these Mh,j to apply the Hirzebruch signature

theorem, and conclude that some of the Mh,j cannot be diffeomorphic to

the standard S7.

First, we state the main result that we will need:

Theorem 3.2: Hirzebruch Signature Theorem

Let M be a closed orientable smooth manifold of dimension 8 with

signature τ(M). Then

τ(M) =
1

45
(7p2(M)− p21(M))

Recall that the signature is the number of positive eigenvalues minus the

number of negative eigenvalues of the (symmetric, bilinear) intersection

form H4(M)×H4(M) → H8(M) given by (α, β) 7→ α ⌣ β.

We can’t really apply this (quite powerful) theorem yet, since we have

only constructed 7-manifolds so far, so to finish the result, we build some

associated 8-manifolds and compute some of their characteristic classes.

Lemma 3.3

Let ι be the standard generator for H4(S4) (Poincaré dual to the

class of a point), then p1(ξh,j) = ±2(h− j)ι ∈ H4(S4).

Proof : Note that there is an argument that has to be made to even make sense of

the Pontryagin classes of sphere bundles (Pontryagin classes being a priori

only defined for real vector bundles). The argument is this: by the long

exact sequence of homotopy groups, π3(SO(4)) ∼= π4(BSO(4)) with BSO(4)

the classifying space of oriented rank 4 vector bundles, so a homotopy class

of a map from S4 to BSO(4) gives rise to a rank-4 real vector bundle via

pullback. Thus we can canonically identify each of our S3 bundles with a

real rank-4 vector bundle, and take Pontryagin classes there instead.
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6 Kuperberg, Characteristic classes of
sphere bundles over spheres in terms

of clutching functions.

Note that this also implies that Mh,j

for h+j = −1 is topologically a sphere.

What Milnor shows in the original pa-
per is that for any two 8-manifolds with
the same (oriented) boundary, 2p21 − τ

(mod 7) is conserved. Since the cobor-
dism group of oriented 7-manifolds is

trivial (due to Thom), every 7 manifold

is a boundary, and this result shows
that 2p21 − τ (mod 7) is an invariant
of 7-manifold (roughly speaking, since
one still has to pick an 8-manifold with
specified boundary and then glue it

shut somehow, but these choices don’t
matter). All we do here is simplify this

abstraction by constructing a specific
closed 8-manifold for our needs.

We claim that p1(ξh,j) is linear in h and j. The idea6 is that if we have

clutching functions f1, f2 on Sn−1 representing fiber bundles E1, E2, we

can wedge them together to get a clutching function on Sn−1 ∨ Sn−1 that

represents a fiber bundle E3 on Sn ∨ Sn (the suspension of Sn−1 ∨ Sn−1 is

really two copies of Sn glued along an interval, which is homotopy equiv-

alent to Sn ∨ Sn). Using one’s favorite construction of Chern classes (e.g,

obstructions), one can show that c(E3) = c(E1)⊕ c(E2).

Addition in πn is modeled by taking the “pinch map” Sn → Sn ∨ Sn that

shrinks the equator to a point, and the induced (contravariant) map on

Hn takes a ⊕ b to a + b, and therefore c(E3) to c(E1) + c(E2). Thus,

(h, j) + (h′ , j ′) = (h+ h′ , j + j ′) in π3(SO(4)) corresponds to the wedge

product of clutching functions fh,j , fh′ ,j ′ and the above argument suffices

to show that the Pontryagin class therefore depends linearly on h and j.

The other ingredient we need here is that p1 is independent of the ori-

entation of the fiber, but if the orientation of S3 is reversed, ξh,j goes

to ξ−j,−h; note that conjugation on S3 corresponds to negating three of

four coordinates (viewed via the standard embedding) which is orienta-

tion reversing, and conjugation clearly takes fh,j to f−j,−h (in the explicit

equations above) from which the claim follows.

Putting these two facts together, and doing some arithmetic, we find that

p1(ξh,j) = c(h − j)ι for some constant c. The sketch of the calculation

of c is as follows: form the associated 4-cell bundle σh,j : Bh,j → S4 by

filling in each fiber with a 4-disk, whose total space is an 8-manifold with

boundary Mh,j . The tangent bundle of Bh,j splits naturally as the bundle

of vectors tangent to each fiber and those vectors normal to each fiber,

and using the formula for the Chern class of a Whitney sum (together

with the fact that the tangent bundle of S4 has p1 = 0), we find that

p1(Bh,j) = σ∗
h,j(c(h − j)ι) = c(h − j)α where α = σ∗

h,j(ι) is the generator

of H4(Bh,j). There is then some case analysis to show that c = ±2. ■

From here, using the assumption thatMh,j is diffeomorphic to the standard

7-sphere (when h+j = 1), we may smoothly glue an 8-disk to Bh,j to obtain

a closed 8-manifold Kh,j with p1 = ±2(h−j) (again by a Whitney splitting

type argument).

Since H4(Kh,j) is just Z (since gluing an 8-disk won’t affect fourth coho-

mology), the signature is ±1 since it comes from a 1× 1 matrix, so pulling

everything together, the Hirzebruch Signature Theorem mod 7 gives us

(after some arithmetic)

(h− j)2 ≡ ±1 (mod 7)

which simplifies to (h − j)2 ≡ 1 (mod 7) because
(−1

7

)
= −1. Now, for

example, (h, j) = (3,−2) satisfies h + j = 1 but 25 ̸≡ 1 (mod 7), and we

have obtained the desired contradiction.
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7 Brieskorn, “Beispiele zur Differential-

topologie von Singularitäten.”

8 Shimada, “Differentiable structures
on the 15-sphere and Pontrjagin classes

of certain manifolds”.

Further Reading

For n ̸= 4, two homotopy n-spheres are h-cobordant iff they are diffeo-

morphic by the smooth h-cobordism conjecture, so the smooth structures

on spheres form a group under connect sum (isomorphic to the oriented

cobordism group of homotopy n-spheres). For S7, this group is Z/28 (so,

in particular, there exists an exotic 7-sphere whose 28-fold connect sum

with itself is the standard S7).

Brieskorn7 in fact gave an explicit construction of the 28 different smooth

structures on S7 as the subset of C5 cut out by

a2 + b2 + c2 + d3 + e6k−1 = 0

(which is complex codimension one, and therefore real dimension 8) for

k = 1, · · · , 28 intersected with a small S9 around the origin (making it real

dimension 7, as desired). In general, subsets of Cn cut out by
∑n

i=1 x
ki
i = 0

after intersecting with a small S2n−1 around the origin are called Brieskorn

manifolds and give other examples of exotic spheres.

One can also run this construction with the octonions in place of the quater-

nions, and this was done by Shimada8 not long after Milnor’s paper was

published.
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